If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+14x+825=0
a = -16; b = 14; c = +825;
Δ = b2-4ac
Δ = 142-4·(-16)·825
Δ = 52996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52996}=\sqrt{4*13249}=\sqrt{4}*\sqrt{13249}=2\sqrt{13249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{13249}}{2*-16}=\frac{-14-2\sqrt{13249}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{13249}}{2*-16}=\frac{-14+2\sqrt{13249}}{-32} $
| x-23=-11 | | (x+4)+(2x+6)+x+x=0 | | (125-x)-25=0 | | 15-+2y=25 | | 23-x=-11 | | x^2+8x=5x | | 1/2x•1/13=9 | | -4y-20+19=-y+17 | | 1/2x/13=9 | | 7(y+3)-15=4(y-3) | | 3+2x=-2(-x-4)-5 | | w/11=8 | | 5^x=9^x-4 | | N=120+4f | | (0.5)x+4=6 | | 2y=9+1 | | 14y-8=13y | | (32X2x)+(20x)=336 | | x=3x^2+2x-8 | | 6(x+3)=3(x-8) | | 8=1/2n+8,n= | | (y^2-18-y)+(10=4y-5y^2) | | 20x-4=2x+5 | | 2x+(4x+24)=180 | | 5/3(9x+6)=11+4x | | 8x-44=0 | | 11x-12=8x+5 | | 932-x=432 | | 256+x=942 | | 8n+4=598 | | 15+3x=75 | | -6=-3x=12 |